コケシノブ科の分類（3）

岩槻 邦男

K. IWATSKU: Contributions to the Classification of the Filmy Ferns (3)

アオホラゴケ属とゼニゴケンダ属

体制の差を別にすれば、広い意味のホラゴケ属に属しているもののうちで、アオホラゴケ属とゼニゴケンダ属の2群は非常に近縁なものである。両者が共存する主な指標形質としては、真の根は発達せず、根茎は長く匍匐して仮根を密生すること、葉脈には偽脈があること、などが挙げられ、共に主として旧世界的熱帯に分布しているものである。Copeland (1933) によれば、ゼニゴケンダ属の種はいずれも矮生化したもので、アオホラゴケ属から独立に多系化してきもので、それぞれを独立の属として取り扱うことは再考を要することであるという。一方、Morton (1968) はアオホラゴケの仲間をホラゴケ亜属の一節とし、ゼニゴケンダの仲間を Didymoglossum 亜属の一節として、両者をはっきりと区別している。指標形質として胞子囊群の付き方が paratactic か epitactic* かという点を挙げているが、極端に矮生化したゼニゴケンダの仲間では葉脈は単生か単羽状なのでそのような指標は全て意味のないものであり、従ってそれによって系統群を辨別されるということはない。そこでここでは Copeland に従ってこの2群を一括にし、両者の構成種の形質をもう少し詳しく比較検討してみて、矮生化というコケシノブ類にとって普遍的な現象が、いろいろの形質にどのような影響を与えるかを考察してみたい。

これらの群の特徴的な指標形質として偽脈があるが、この形質は一体何であるのかその本体はまだはっきりとは分かっていない。アオホラゴケなどの場合、光学顕微鏡による観察の範囲では、これは葉脈を構成するのと同じ細胞からできている。即ち、葉脈の細胞より少し細長い細胞が1列で軸に並んでいるもので、隔壁は側壁に比べて非常に薄く、列に対して直角の位置にあるのが原則としている。細胞は内容物で充満しているので、若い葉では葉緑素を抜いて観察しないと隔壁は見落とし易く、偽脈が1本の異型細胞として描かれている図が多い。側面の細胞壁は葉面の細胞のものよりも少し厚く、極く若い葉の先端近くでもやや不透明になって木化を想像させるものがあるが、膜孔の構造は葉面の細胞のものと全くないようである。細胞を切断面で見ると、葉脈の細胞の場合は少し扁平であるが、偽脈のものは葉脈のものと同じようにほぼ円形である。アオホラゴケ属の場合には、葉脈は必ず数列以上の細胞が束になり、仮導管を含んでいるが、偽脈はいつもでも細胞が1列であるか、或いは平面的に並ぶだけで、束になることはないという点で両者ははっきり区別がつく。ゼニゴケンダ属の矮生種では脈の分

* これは Prantl (1875) の使った用語で、葉脈と胞子囊群の位置を示すものである。脈の分岐が内先で、内側の小脈に胞子囊群を頂生するので外側の主脈が無限に伸長を続け得るというものを paratactic という。それに対して、脈の分岐が外先で、主脈の側に胞子囊群が頂生してそれで脈の伸長が止まる形式のものを epitactic という。Morton はこの差をコケシノブの分類の指標形質として重視しているが、ゼニゴケンダ属。の例に見るように、コケシノブ一般に適用できるというものではない。
岐した部分では細胞1列になってしまい部分が広って、この場合では偽脈と脈との差は明らかにしない。偽脈が実際通達の偽らきに特別に関係しているものかどうかは分からない。また、途中で通達組織と切り離してそのような組織ができるのが何故なのかかも分からない。しかし、ゼニギケサ属の矮生種の場合で、栄養葉では分岐した脈は細胞列1つから3つの方になるもので、菱形腎葉に達する脈はしっかりしていて数列以上の細胞が束になり仮導管を含んでいる。もっとも、偽脈という術語の使い方も統一されていないで、脈とつながっていないものだけに限定している人と、仮導管を欠くものをひっくるめてすべて偽脈と呼ぶ場合もある。ゼニギケサ属について論識される場合は後者が多いし、アオホラソ属の場合は差がはっきりしているので前者に従っているような恰好になる。なお、van den Boschの丁寧な図以来、偽脈は葉脈と違う表現がとられているのが例になっているが、これは乾燥標本の場合に偽脈の隔膜が非常に見難く、一部の大型側脈のように見えるのをそのまま描くことになった故だろうと思われる。この偽脈の組織発生的研究をすれば、葉脈の組織の分化に何かの示唆が得られることになるかもしれない。この形質についてWessels Boer(1962)は簡単な顯微化学的解析を試みているが、この本体を明らかにするような結果は得られていない。

アオホラソ属には細胞論的に従えば30種以上が知られていることになるが、ヒマラヤを中心にしてアオホラソの一類の種の在り方はよく分かっていない。この属は主として旧世界の熱帯に分布しているものであるが、Morton(1968)はT.pyxidiferum をこの群に含めている。この種は熱帯アメリカと南アフリカのもので、台湾にもあるT.latifrons に似て全体的形状が少し崩れていた点で典型的ではないけれども、ハイホラソ属のものであることは間違いない。Mortonが間違ったのは、この種名がT. bipunctatum と混同されてアオホラソ属に誤用されたことがあったのに引き揚げられたためだろう。一方、ゼニギケサ属にも20種を超える報告があるが、前回のテダホラソ属の場合のように矮生のものについてよく機械的に判断されることに、異質のものも含まれているようである。特にM. hookeri など新世界的種類が旧世界的ゼニギケサ属のものと全く系統上に属するのだろうということは問題が残っている。これらの種はむしろDidymoglossumに近い点もあるが、手許に資料の乏しいこれらの種についての検討は他日を期すことにして、ここでは旧世界の種を中心に検討を進めていくことにしたい。

ゼニギケサ属のうちで非常にはっきりした種にゼニギケサ属があるが、これは旧世界の熱帯に広く分布していて、台湾や琉球から奄美大島にまで北上している。この種（第10図A）では円形に近い体形の中心から少しずれた位置に根茎と付着する部分があり、これを原点に放射状に展開を重ねて、大きなものでは径3cmを超えるような葉状単葉となる。葉裏脈上には根茎につくので同様な仮根があって、それで岩上や粘に固くて密着している。このような葉状の葉の構成も、葉裏脈上に仮根のつくなること、この種に特異なことで、そのようなことからも、ゼニギケサ属は特化した種であることがわかる。
ゼニギケサ属では他の種も単葉であるが、僅かに葉柄のあるものとほとんど無柄のものとあっても、側脈の葉をもつものはゼニギケサ以外にはない。葉面が円形に近く、無柄で基部が心形になるものでは、一見側脈のようにみえることもあろうから、それは見かけだけの

* 離生葉の種の初級での分類については、南紀生物第10巻（原稿中）に現状を紹介している。
ことである。第 10 図 B のように、M. motleyi や M. cultratum などは、栄養葉には主脈を欠いて偽脈だけがあるというようなことになる。それが、第 10 図 C の段階では更に長円形に狭くなり、そのような葉形のものでは D のように辺縁が不齊になって裂片の突出することが多い。そして、裂片には多くの場合側脈を含むことになる。

一方、M. minutissimum（第 10 図 E）では単葉のものから二叉分裂をするもの、更に 3 つから 4 つのが裂片に分かれるものまであって、それぞれの裂片は M. bimarginatum や M. sublimatum のもののように不齊で深い切れ込みのものではなく、掌状或いは羽状分裂が歪化によって単純化してきたもののような姿勢をとっている。

逆に、アオホラゴケ属の矮生種のいくつかの葉形を見ると、C. latemarginale や C. megiostomum では掌状に分岐する裂片が数個以下の場合が普通で、小さい葉のうちには単葉にまで単純化してしまうものまでなくはない。また、裂片の巾を比べるとすれば、C. nanophyllum（第 10 図 F）のものは M. minutissimum のものとほとんど同じ位で、大きさや構造だけからいえば C. nanophyllum の単葉のものや二叉に分裂した葉は M. minutissimum のものと区別できない。

Copeland (1938 ら) はこれらの群を検索するのに至り分良加減の形質を挙げているが、群の定義や一つ一つの構成要素の取り上げ方からいって、ゼニゴケ属とアオホラゴケ属の差を、葉形の差と包膜の唇部の形で指摘させようとしているようである。しかし、葉形については、M. minutissimum のような極端な矮生種のあることから、ほとんど区別は不可能だといえようである。更に包膜の形態を見てみると、確かに、アオホラゴケ属のものの大部分は基部が円状で上部の三分の一から半分位が二弁状の唇部をつくっていて、しばしば先端は鋭尖形にまでななるような、ヒメチレコケノブ属のものとよく似た包膜をもっている。しかし、C. christii では唇部は二裂するのではなく辺縁が広く捗がっていることが種の指標形質として以前から注目されていたことがあるし、C. megiostomum や C. nanophyllum のような矮生種でも、唇部が二弁状になるずに辺縁が捗がっている包膜をもつことが分かっている。しかし、だからといって、他の形質を総合的に比較してみて、C. christii がアオホラゴケ属のものであることを疑う人はいない。またゼニゴケ属のものでも包膜の形には相当変異があり、辺縁の捗がりが唇状になる種も珍らしい程ではない。

包膜の形態がコケノブの分類にとって重要な指標形質になっていることは既に述べた（23：62, f. 3, 4）が、アオホラゴケの包膜の個体変異を追う第 11 図のようになり、ホソバコケ
シノブの場合などとよく似て、はじめは葉片の先端が2枚に分れて凹みをつくり、それがコップ状に深くなるのと平行して皮部が伸長するために、アオホラゴケ属の包膜になるのと、基部が伸びずに皮部だけが伸長してホソパコケシンノブ的な包膜になるのとが分かれてくることになる。C. christii などの包膜の発生初期の観察はしていないが、おそらく皮部が伸長しないでコップ状の縁がどんどん伸長することになるのだろう。それぞれで、包膜のどの部分の伸長が旺であるかは或る程度系統的なものを反映しているものである。

以上のことから、現在区別されているような形でゼニゴケシノブ属とアオホラゴケ属を異なった系統群に属するものと考えることは正しくないといえると思う。Copeland が指摘したように、両者のどれかとどれかの間のより密接な類縁が認められることがあったりして、二つの群を一つに繋めてその内容を再検討してみる必要があるものと思われる。その場合、包膜の形で指標されるように、C. christii—C. megistostomum の系列があることや、葉形などの類似から M. beccarianum, M. motleyi から M. sublimbatum への系統が認められることなどは比較的はっきりしているし、C. bipunctatum から C. bilabiatum, C. tagawanum などを経て C. latealatum 群にまで変異する系列のものがあることも確かなものである。しかし、たとえば C. bimarginatum と C. sublimbatum などのように、いろんな点でよく似ていて周縁の仮脈があるかないかという違いのあるものを、C. bipunctatum と C. latealatum 群のものと同じように理解して取り扱うことができるかどうかは、周縁の仮脈の性質についてもっとよく検討されてからでないと定定できないし、同様に、周縁の仮脈だけで斜行する仮脈をもたない C. nanophyllum が、周縁の仮脈も斜行する仮脈ももっている C. latemarginale を経て、斜行する仮脈だけで周縁の仮脈をもたない M. minutissimum に系統的に関連づけられるかどうかかも現在の知識だけでは容易に結論づけることはできない。

また、この二群を考える際にどうしても取り上げて比較してみると必要近縁群に Lecanium とDidymoglossum がある。この二群はいずれも同じ性質の仮脈を持つことと、体制が類似することから、アオホラゴケ属やゼニゴケシノブ属とよく似ているものである。Morton (1968) が Didymoglossum, Lecanium, ゼニゴケシノブ属を一つの亜属 Didymoglossum にまとめ上げたことは既に述べた。
Lecanium は中南米に極限された L. membranaceum 1 種だけのものであるが、既に述べた（本誌 23: 60, 第 1 図 5）ように、葉の枝に特殊な形態の鱗片があることで非常に特徴のやさしいものである。また生殖植物を入手することがないのでその鱗片の作られる過程などについて詳しく解析することはできないが、いずれにしても毛と比較して何か手当びたものと簡単に結論づけられるものではないのである。この群については、この形質が何かはっきりするまで、系統的な位置づけを考察することは不可能である。

Didymoglossum は分布の中心を中南米におくもので、Wessels Boer（1962）によると 15 種がその地域に確認される。アフリカに 2 種と、セイロンから東南アジアにかけて、D. wallii と D. exiguum の 2 種がこの属に加えられている。体制の似ていることや偽脈のある点でゼニゴケダ属に非常によく似ており、更に二弁状になった包膜の脇部はアオホラゴケ属のものと同である。この群における特徴的なのは、葉の枝に星状毛があることで、この群の定義にもその形質が重視されている。その毛は或る場合にはダクタラホラゴケ属（前回述べた狭義の）のものに似ていて、位置は Lecanium の鱗片と同じであるからと結論されるようなものではない。東南アジアの D. exiguum は、体制だけからいうとゼニゴケダ属と非常によく似ていって M. motleyi と、葉形はほとんど同じである。しかし D. exiguum の場合には、包膜の脇部は二弁状になり、その点では M. motleyi とははっきり違う。ただ両者は同じ岩上に混生していることがあるが、材料の取り扱いに混乱が生じているようなこともあるようである。いずれにしても、Didymoglossum の葉の枝の毛は特性的なもので、ダクタラホラゴケ属を最狭義に認識する場合にその形質が良い指標になったことからも、ゼニゴケダ属との兼を示すもののように思わわれる。

そこで、これらの群をまとめて現在の知見で整理すると、Lecanium と Didymoglossum はそれぞれ独立の群として認めることができるけれども、ゼニゴケダ属とアオホラゴケ属は一つの系統群に属するものであって、その内部の亜群についてはこれまでの機械的な区分を取り除いて再検討されねばならぬということになる。アオホラゴケ属と合併した広義のゼニゴケダ属の亜群としては、ゼニゴケダ属（ゼニゴケダ 1 種だけ）、アオホラゴケ属（C. bipunctatum からアオホラガまで）、C. christii 属（C. christii や C. megistostomum など）、M. motleyi 群（M. motleyi やメゴケダなど）などは比較的はっきりしているが、それらを含めて個々の種の間の系統関係については更に詳細な比較検討を要することである。いずれにしても、ホラゴケの系統に属するこの一群の仲間は偽脈を持つという点で共通の性質をもっていはいるが、他の群と異った系統に属するかどうかはそれだけの標微によって確証することはできないことである。ただ、これらの仲間は、コケノブの他のどの群とも系統的に非常に近いという証拠が一切もないことは確かである。

References

前田に挙げたものに追加すべきものだけを挙げる。