北海道における温泉藻類の研究 Ⅶ

米 田 勇 一

北海道の旧脇振国には羊蹄山・有珠岳・恵庭岳などの諸火山が噴出し、洞爺湖・倶多楽湖・支笏湖などのカルデラ湖をたたえている。火山性地域の特色として、鉱泉の湧出もまた豊富であり、日本における温泉密集地帯の一つに数えられる。この地域にある諸温泉のうち、蝦夷及び弁慶両温泉の藻類については筆者がすでに報告した。登別温泉については前に H. MOLISCH（1926）が大湯沼付近から藍藻 Chroococcus sp., Synechococcus sp., Lyngbya sp. 及び細菌 Chlamydothrix thermalis を、地獄谷から Chroococcus sp. を報告しているし、後にまた根来（1942）は地獄谷の温度 27～46.8°C, pH 2.1～2.2 の温泉水中に Cyanidium caldarium の多いことを述べている。MOLISCH が Chroococcus sp. と記載した藻類は疑いもなくこの Cy. caldarium であると思われる。なお MOLISCH はカルルス温泉に Mastigocladus laminosus, Oscillatoria geminata, Os. amphibia 及び 2 種の Lyngbya を記載している。

本稿では旧脇振国に属する洞爺湖温泉、カルルス温泉及び真駒温泉の藻類について報告する。研究に用いた資料は1938年及び1939年に採集したものであるが、調査結果を発表する機会を逸して今日に至った。各温泉の現状はその頃と異なっているであろうし、温泉のミクロフロラに多少の変遷を生じているであろう。当時の筆者は小泉教授の指導下に日本の温泉藻類に関する研究を開始したのであるが、その後数年を経た現在、筆者をのびのびと眺めきりをして感吐にたえないものがある。

洞爺湖温泉 この温泉は洞爺湖の西南岸に湧出し、古くは床丹温泉と称した。湧出孔は数箇所あるが、泉温はいずれも 50°C 前後で、白色透明な食塩泉に属する。この温泉場は洞爺湖と有珠岳による山水美な恵まれ、観光保養の地として発展してきたから、泉温現象が自然状態に保持されている所は殆ど存しない。従って温泉藻類の生育に適した環境は成立していなかった。調査した場所は次の 3 カ所である。

（a）第一ホテル温泉産。泉温 48°C, pH 7.4 の温泉井の水底及び水面に Mastigocladus laminosus の群生が認められた。その際の流れの中で温度 46°C, pH 7.7 の所に M. laminosus, Phormidium laminosum, Xenococcus Kerner から成る集団があった。また窓際にある貯泉槽は温度 46.1°C, pH 7.4 の温泉水をたたえ、その水面及び側壁に藍藻が薄膜を成していた。この藻は M. laminosus, Ph. laminosum を主体とし、それに Lyngbya polysiphonae, L. Lagerheimii, X. Kerner が混生するものであった。

（b）電気鉄道終点付近の一源泉から湖に向う温泉流。泉温 47.9～49°C, pH 7.4 の流泉中に Phormidium laminosum の生育が顕著で、特に流れの急な所では厚さ 2 cm に達する帯状を成していた。

（c）富士屋ホテル。温泉浴槽のコンクリート壁外面に Ph. laminosum が着生し、X. Kerner が混生していた。このような生育の場所は特殊の環境条件におかれているわけだが、一応記録しておく。
以上の如く洞爺湖温泉の藻類は藻薬のみであり、代表的な温泉藻類の Mastigocladus laminosus, Phormidium laminosum の2種が優占していた。

カルルス温泉 この温泉は有名な登別温泉から西約 9 km の渓谷中に湧出する。源泉は第三紀層に発し、渓流の両側数カ所に少量の湧出を見る。泉質は単純泉と見なされ、その泉温は 48〜60℃の範囲にある熱泉である。既述の如く本温泉から MOLISCH は数種の藻類を報告したが、筆者はさらに藻類12種、珪藻11種を検出した。調査地点の状況は次の如くである。

（a）共同湯前の河床にある温泉井。深さ約 1 m の温泉で、底から絶えず少量の湧出を見る。泉温 52.5℃、pH 6.9。この泉には Mastigocladus laminosus, Phormidium laminosum, Synechococcus elongatus var. amphigranulatus の3種が旺盛に生育を示していた。またその渓流中、温度 37℃の区域には全面黄金色を呈する藻群が見られた。これは Ph. laminosum の群集特に Lyngbya Martensiana, Oscillatoria anguina, Os. animalis, Anabaena oscillarioides, Gloeocapsa arenaria, Chroococcus minutus var. thermalis が混生しているのであった。この温泉が渓流に注入する付近では、温度 35.8〜36℃、pH 7.0 を示し、そこに3種の藻薬 Os. anguina, Os. animalis 及び Os. amphibia が淡褐色の藻として生育していた。

（b）共同湯町泉槽の渓流。温度 37℃、pH 6.8 の温水が地上を流れ、その底に藻薬 Lyngbya Martensiana, Oscillatoria anguina, Os. animalis, Os. amphibia 及び珪藻 Navicula cryptocephala が見られた。

（c）遊園地前の河床にある微温泉。岩脈の隙間から湧出する温度 30℃、ph 7.0 の微温泉で藻薬 Gloeocapsa arenaria の群を珪藻 Diploneis elliptica, Staurosine aniceps, Neidium affine, Cymbella turgida, Epithemia turgida, Rhopalodia gibberula var. van Heurck, Denticula thermalis が混生していた。

（d）寺橋の側にある小温泉。寺橋の近くには岩盤をくり抜いた露天の大浴槽があるが、その近くの岩経から多少ずつ湧出する温泉水の流れに藻薬 Aulosira impexa, Microcoleus sociatus var. minor 及び珪藻 Eunotia monodon, Cymbella affine が見られた。この場所は岩脈が枝えているで直射日光は殆ど利用し得ないであろう。温泉は少量であったが、温度は 52℃に達しており、pH 値は7.0であった。

カルルス温泉は小規模ではあるが、比較的多種類の藻類を産する。藻薬15種、珪藻11種が泉温 30〜52.5℃の範囲に見られたが、代表的なものは Mastigocladus laminosus, Phormidium laminosum 及び Synechococcus elongatus var. amphigranulatus の3種藻薬である。珪藻が多いのは、温泉の位置が渓流に関係しているためと思われる。

丸駒温泉 支笏湖の北岸に湧出するささやかな温泉である。温泉浴場としてはただ1カ所に簡素な設備を有するのみで、湖岸線に接して湧出する温泉をそのまま利用している。ここには温泉水薬の生育が認められなかった。湖岸線に沿って所々に天然湧出のまま放置されている温泉水あり、それらは多少とも湖水と混じっていると思われるが、若干の藻類が認められた。これらの場所は便宜上 a, b, c, などで表わし、各々について略述する。

（a）水温 45℃、pH 6.9. ここには Oscillatoria amphibia, Os. brevis の2種が群を形成していた。

（b）水温 42℃、pH 6.9. Phormidium luridum, Os. brevis の2種が混じて、薫紫色の柔軟な薄膜を生じていた。
(c) 水温 42°C, pH 6.9。条件は前同様であるが、所産の種類は(a)においてと等しく、Os. amphibia, Os. brevis であった。
(d) 水温 38.5°C, pH 6.8。緑藻 Palmella mucosa の無定形膜質状の粘質塊上に藻類 Os. anguina, 珪藻 Navicula Reinhardtii, Synedra ulna, Fragilaria virescens, Cymbella cistula, Melosira italica が混生していた。

丸駒温泉における藻類生息の温度範囲は 38.5～45°C, pH は 6.8～6.9 であった。泉質はおそらく単純泉に属すべきものであろうが、流出量は少なく、且つ比較的低温である。その藻類植物相は温泉としての特徴に乏しく、普通の淡水藻のうち好温性の種類が侵入して群落を形成するに至ったものと思われる。藻類 3 種、珪藻 5 種、緑藻 1 種を産するが、典型的に温泉植物と見なすべき種類は含まれていない。

次に上記 3 温泉に産する藻類の種類を列挙して若干の説明を加えておく。

藻類 Cyanophyceae
(1) Gloecapsa arenaria (Hass.) RABH. カルルス温泉, 37°C, pH 6.9。Phormidium laminosum の藻被中に他の糸状藍藻と共に混生。
(2) Gloecapsa gelatinosa KÖTZ. カルルス温泉, 30°C, pH 7.0。岩盤上の微温泉に産し、数種の珪藻を付着させていた。
(3) Chroococcus minutus (KÖTZ.) NAG. var. thermalis COPELAND. カルルス温泉, 37°C, pH 6.9。Ph. laminosum の藻被中に Gloecapsa arenaria と共に混生。
(4) Synechococcus elongatus NAG. var. amphigranulatus COPELAND. カルルス温泉, 52.5°C, pH 6.9。Mastigocladus laminosus, Ph. laminosum の上に着生。
(5) Xenococcus Kerner HANSG. 洞爺湖温泉 (第一ホテル), 46°C, pH 7.4。M. laminosus, Ph. laminosum の上に少量産した。
(6) Mastigocladus laminosus COHN. 洞爺湖温泉 (第一ホテル), 46～48°C, pH 7.2～7.4。カルルス温泉, 52.5°C, pH 6.9。
(7) Autosira impexa BORN. et FLAIL. カルルス温泉, 52°C, pH 7.0。Microcoleus sociatus var. minor と混生。
(8) Anabaena oscillarioides BORY. カルルス温泉, 37°C, pH 6.9。Ph. laminosum の中に他の糸状藻類と混生。
(9) Oscillatoria geminata MENEGH. カルルス温泉, 45°C; 50°C (MOLISCH)。
(10) Oscillatoria amphibia AG. カルルス温泉, 35.8°C, pH 7.0; 45°C (MOLISCH); 丸駒温泉, 38.5～45°C, pH 6.8～6.9。
(11) Oscillatoria brevis KÖTZ. 丸駒温泉, 42～45°C, pH 6.9。
(12) Oscillatoria animalis AG. カルルス温泉, 35.8～37°C, pH 6.8～7.0。Os. amphibia, Os. anguina と混生。
(13) Oscillatoria anguina (BORY) GOM. カルルス温泉, 35.8～37°C, ph 6.8～7.0。
(14) Phormidium luridum (KÖTZ.) GOM. 丸駒温泉, 42°C, pH 6.9。本藻は通常の淡水域に産するのみでなく、諸所の温泉からも報告されている。
(15) Phormidium fragile (MENEGH) GOM. 洞爺湖温泉 (第一ホテル), 46°C, pH 7.2。M. laminosus と混生。
(16) Phormidium Corium GOM. カルルス温泉, 37°C, pH 6.8。
(17) Phormidium laminosum (Ag.) GOM. 洞爺湖温泉（第一ホテル），46.1℃, pH 7.4; 同上路傍の流泉，47.9〜4.9℃, pH 7.4; カルルス温泉，37〜52.5℃, pH 6.9。
(18) Lyngbya polysiphonae FREMY. 洞爺湖温泉（第一ホテル），46.1℃, pH 7.4。
(19) Lyngbya Legerheimii (MÖR.) GOM. 洞爺湖温泉（第一ホテル），46.1℃, pH 7.4。L. polysiphonae と共に M. laminosus, Ph. laminosus の藻中に混生。
(20) Lyngbya Martensiana MNENGH. カルルス温泉，37℃, pH 6.9〜7.0。糸状体の径 7〜8μ, 細胞条の径 5〜6μ。
(21) Microcoleus sociatus W. et G. S. WEST var. minor GARDN. カルルス温泉，52℃, pH 7.0。基種は北海道鹿部温泉，伊豆下賀茂温泉から報告されているが，この変種は日本新種となる。

硅藻類 Bacillariophyceae
(22) Melosira italica (EHRB.) KÜTZ. (Fig. 1.) 丸駒温泉，38.5℃, pH 6.8。淡水藻としては珍しくないが，日本温泉植物としては新報である。
(23) Fragilaria virescens RALFS. 丸駒温泉，38.5℃, pH 6.8。
(24) Synedra ulna (NRTZSCH) EHRB. 丸駒温泉，38.5℃, pH 6.8。
(25) Eunotia monodon EHRB. (Fig. 9.) カルルス温泉，52℃, pH 7.0。M. sociatus var. minor の中に散生していた。温泉産としては日本新報。
(26) Diloneis elliptica (KÜTZ.) CLEVE. (Fig. 3.) カルルス温泉，30℃, pH 7.0。殻長21〜28μ, 幅12〜15μ。日本温泉新報。
(27) Neidium affine (EHRB.) CLEVE. (Fig. 4.) カルルス温泉，30℃, pH 7.0。殻長50〜55μ, 幅12〜14μ。前種と同じに淡水藻として普通に見られるが，温泉産としては日本新報。
(28) Stauroneis anceps EHRB. (Fig. 2.) カルルス温泉，30℃, pH 7.0。殻長30μ, 幅8μ。
淡水藻として普通に見られるが，温泉産として新報。
(29) Navicula Reinhardtii GRUN. (Fig. 6.) 丸駒温泉，38.5℃, pH 6.8。日本温泉産として新報。
(30) Navicula cryptocephala KÜTZ. カルルス温泉，30℃, pH 6.8。淡水藻として普遍的に分布。
(31) Pinnularia gibba EHRB. var. parva (EHRB.) GRUN. カルルス温泉，30℃, pH 7.0。殻長41〜45μ, 幅10〜12μ。
(32) Cymbella cistula (HEMP.) GRUN. 丸駒温泉，38.5℃, pH 6.8。次の2種と共に普通な淡水藻。
(33) Cymbella turgida (REG.) CLEV. カルルス温泉，30℃, pH 7.0。
(34) Cymbella affine KÜTZ. カルルス温泉，52℃, pH 7.0。
(35) Denticula thermalis KÜTZ. (Fig. 5.) カルルス温泉，30℃, pH 7.0。殻長15〜21μ, 幅5〜6μ。Gloeocapsa gelatinosa の殻中に混生。
(36) Epithemia turgida (EHRB.) KÜTZ. (Fig. 7.) カルルス温泉，30℃, pH 7.0。殻長65〜70μ, 幅15〜16μ。温泉新報。
(37) Rhopalodia gibberula (EHRB.) O. MüLL. var. van Heurck O. MüLL. カルルス温泉 30℃, pH 7.0。
（38）Palmella mucosa Kürz.（Fig. 8.）
丸駒温泉、38.5°C、pH 6.8。腺状無定形の軟かな群体を形成し、諸種の微小藻類が著主していた。細胞はおおむね球形、その径7〜10μ
本藻は淡水藻として世界的に広く分布するものであるが、温泉藻としては日本新報告となる。

洞爺湖・カルルス・丸駒の3温泉を調査して上記の如く総計38種（藻類21種、珪藻16種、緑藻1種）の藻類を検出した。洞爺湖温泉からは6種、カルルス温泉からは26種、丸駒温泉からは9種を得た。本報告における藻類生育の温度は30〜52.5°C、pHは6.8〜7.4の範囲にあった。最高温度はカルルス温泉に記録され、52.5°Cの熱泉には典型的な温泉藻類3種を産し、また52°Cの熱泉には別の藻類2種を産したことが注目される。

これら3温泉の藻類を比較してみると、それぞれの環境に応じて顕著な特徴が認められるであろう。洞爺湖温泉は藻類のみを産し、温泉水藻として代表的なM. laminosus、Ph. laminosumを優占種にしている。カルルス温泉には藻類15種、珪藻11種を産したが、珪藻の種類が多いことを特色とする。この温泉は千歳川渓谷の第三紀層から芽出し、源泉は主として河床に存する。そのために河川性の緑藻華のうち高温に耐忍し得る種類が温泉内で生活するようになったものと思われる。しかしその藻類は支配的なのはやはり珪藻であって、珪藻は副次的であった。次に丸駒温泉では藻類3種、珪藻5種、緑藻1種を産したが、珪藻は種類数において劣るけれども繁殖は最も盛であった。この温泉は湖岸線に沿出し、これら珪藻・緑藻は湖水に由来したと思われる。カルルス及び丸駒両温泉の珪藻には共通した種類が認められないのも、前者は河川性、後者は湖沼性要素に起因していることを示すものであろう。このように見てくると、洞爺湖温泉は湖沼性要素のフロラを発達させているが、カルルス温泉では河川性要素が加わっており、丸駒温泉では沼沼性要素が有力であると考えられる。これから3温泉に共通な種類がないが、洞爺湖・カルルス両温泉に共通なものとしてM. laminosus、Ph. laminosumが指摘され、またカルルス・丸駒両温泉にはOs. amphibiaが共通である。

この報告により日本温泉藻類として新たに記録された種類をまとめると次の如くである。
藻類：Microcoleus sociatus var. minor。緑藻：Palmella mucosa。珪藻：Melosira italica、Eunotia monodon、Stauroneis aniceps、Diploneis elliptica、Neidium affine、Na-

Figs. 1-9. 1, Melosira italica (Ehrenb.) Kütz. 2, Stauroneis aniceps Ehrenb. 3, Diploneis elliptica (Kütz.) Cl. 4, Neidium affine (Ehrenb.) Cl. 5, Denticula thermalis Kütz. 6, Navicula Reinhardti Grün. 7, Epithemia turgida (Ehrenb.) Kütz. 8, Palmella mucosa Kütz. 9, Eunotia monodon Ehrenb. (1-5,×800; 6-7, ×500; 8-9, ×400.)
vicula Reinhardtii, Epithemia turgida, Denticula thermalis.

Résumé

The thermal algal flora of Toyako, Karurusu and Marukoma are treated in the present paper. These three hot springs are in the mountainous region of the province of Iburi, Hokkaido. Surveying a number of tubes, containing thermal microorganisms, the author was able to identify thirty-eight species in all, including 21 blue-greens, 16 diatoms and 1 green. It is noticeable that only a few species are of common occurrence.

The hot springs of Toyako are on the southwestern bank of the caldera lake Toyako. The temperature-range of the thermal algal growth was between 46-49°C and the pH-range 7.2-7.4. The algae were represented by six species of Cyanophyceae. They were of typical thermal nature, and the community was dominated by Mastigocladus laminosus and Phormidium laminosum. The hot springs of Karurusu are on a river bed. The thermal algal growth was recorded from 30°C to 52.5°C in temperature and 6.8-7.0 in pH. The flora was represented by 15 species of Cyanophyceae and 11 of Bacillariophyceae. In a hot water of temperature 52.5°C, three typical thermal forms, i.e. Synechococcus elongatus var. amphigranulatus, M. lamenosus and Ph. laminosum, were found growing fairly abundantly. A relative large number of diatoms exhibit the characteristic of the thermal community, and it is probable that they originated from fluvialite representatives. The hot springs of Marukoma are on the immediate shore of the caldera lake Sikotuko. The thermal algal growth was found in the water of temperature 38.5-45°C and of pH 6.8-6.9. The thermal community were characterized by 3 Cyanophyceae, 5 Bacillariophyceae and Palmella mucosa. It must be noted that they are usually found from standing freshwater habitats.

アシツキノリとカモガワノリ

これら2種のノリと名のついた淡水産藻類は、文字通り世界的な汎存種であるが、日本では料理に用いればある。大伴家常の和歌で有名なアシツキノリに、はじめて学名 Nostoc verrucosum VAUCHER を当てられたのは小泉先生であった。この藻は比較的きれいで渓流・河川または湖水に産し、主として岩石に着生するが、仔々アシなどの水草に付くこともある。カモガワノリは湿地・草地・路傍・社寺の境内などによく見られる土壌藻類である。非常に乾燥しやすい場所にも生じ、晴天が続くとカサカサになって粉粀することができるほどになるが、温気や水分を得るとたちまち 原状を回復して寒天様藻状になる。学名は Nostoc commune VAUCH である。

上述したように、アシツキノリは水中に生じ、カモガワノリは地上に産する。ところが従来出版されている著書や事典などには、この点がいまいであったり、まちがっていることが多い。カモガワノリの名は京都の賀茂川に由来することはいうまでもないが、それはただ川に近い所に多く産するからであって、水中に生ずる意味ではない。筆者はかって京都の市場でこれ を求めて調べたことがある。キブノリやシラカワノリも同じく N. commune である。なお地上に生育する Nostoc のうち、地方によっては N. muscorum AGARDH を利用している。

（米田勇一）